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Absh-dcl. The equation of motion of the auto-correlation function has been solved analytically 
using a hyperbolic secant fom of the memory function. The analytical result obtained for long- 
time expansion together with short-time expansion provides a good description over the whole 
time domain as judged by a comparison with the numerical solution of the Mori equation of 
motion. H'e also find thal the time evolution of the auto-correlation function is determined by 
a single pamneter T which is related to frequency sum rules up to fourth order. The auto- 
correlation function has been found to show simple decaying or oscillatory behaviour depending 
on whether the parameter r is greater than or less than some critical value. Similarities as well 
as differences in the time evolution of the auto-correlation have been discussed for exponential. 
hyperbolic seeanl and Gaussian approaches of Ihe memory function. 
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1. Introduction 

A considerable amount of work has been carried out in recent years to study the time 
evolution of auto-correlation functions (ACFS) and transport coefficients of atomic fluids. In 
these studies, equilibrium [I ,  21 and non-equilibrium [3-61 molecular dynamics techniques 
have been used to investigate velocity, stress and energy current density ACFs. On the other 
hand, the ACFS can be studied theoretically [7] through Mori's integro-differential equation. 
In this approach, the fundamental theoretical quantity to be calculated is the memory 
function. The reduction of the problem of studying ACFS to calculate the appropriate memory 
function is an important step in the theoretical analysis of atomic motion in fluids. Since the 
exact microscopic calculation of the memory function is not yet feasible, in general, simple 
approximations to the memory function can be made that preserve a number of important 
properties of the ACF irrespective of the approximation introduced for the memory function. 
In the present work, we use a hyperbolic secant form of the memory function, which is a 
solution of a non-linear differential equation well known to soliton dynamics. This memory 
function has been used by us [GI11  and also by Heyes and Powles [12] in the study of 
time correlation functions (TCFS) and transport coefficients of classical dense fluids and has 
provided a very satisfactory agreement with the available computer simulation data. In fact, 
very recently Leegwater [13] has derived an expression for the first-order memory function 
of the velocity ACF using the kinetic theory approximation, fitted to the hyperbolic secant 
form. However, in all the earlier studies of the time correlation function using hyperbolic 
secant memory the underlying Mori equation has been solved only numerically. Therefore, 
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the aim of the present study is to solve analytically the Mori equation with hyperbolic secant 
memory. The analytical solutions provide aclearer picture of the time evolution of the ACFS 
as has also been demonstrated by Denner and Wagner [I41 using exponential and Gaussian 
memory functions. 

The layout of the paper will be as follows. In section ‘2 we introduce the memory 
function used in this work. In section 3, WE discuss the Fourier spectrum of the ACF. The 
analytical short- and long-time expansions for the ACF are obtained in section 4. Section 5 
contains an analytical investigation of the poles of the Laplace transform of the ACF. The 
validity of analytical expressions for the poles is also checked in this section by comparing 
with numerical results. In section 6, we compare our analytical results with that obtained 
from numerical calculation of the ACF. In section 7, the results of the ACF obtained with 
hyperbolic secant memory are compared with those obtained with Gaussian and exponential 
memory. 
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2. The model memory function 

Mori has shown that ACFS obey an equation of motion [7] that determines their time 
evolution. It is given by 

+ 1* C(t’)MI ( t  - t’) dt‘ = 0 

where C(t) is the ACF of some dynamical variable A(r). M l ( r )  is the first-order memory 
function and is defined as 

where 

f ~ ( t )  = exp(iQlLQlt)Q~A. 

The operator Ql (= 1 - PI) projects onto the subspace orthogonal to the variable A@). 
The angular brackets in (2) represent the ensemble average and L is the Liouville operator. 
In order to calculate the time evolution of the ACF from (l), the fundamental theoretical 
quantity needed is the memory function M I  ( t ) .  If we apply the projection operator technique 
used in deriving ( I )  to the case when f l ( r )  is treated as the dynamical variable, we obtain 
an equation similar to (1) for the time evolution of M , ( t ) .  This provides 

%.@ + I’ MI (t‘)M2(t - r’) dr‘ = 0 
dt (3) 

where M&) is the second-order memory function defined as 

MZO) = (f*(t)fi*(o))/(lf2(o)IZ) (4) 

with 
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and the operator Pz projects on ordinary dynamical variable fj ( t ) .  We differentiate (3) with 
respect to time t to obtain 

where Mz(0) = bZ = 6 2  = (C,/Cz - C2) with Ca being the nth-order sum rule of the ACF 
defined as 

Now the problem of calculating the time development of the ACF reduces to the calculation 
of Mz(t) or Ml(t), which themselves are time correlation functions of time derivatives of 
the original dynamical variable A@). The exact microscopic calculation of Ml(t) or M&) 
is not yet possible. Therefore, several phenomenological forms of the memory function 
have been proposed in the literature [7-121. In this work we take 

MI ( t )  = a sech(bt) (6) 

with a = Mr(0) = 61 = CZ. This memory function tends to Gaussian and simple 
exponential forms for the short and long times, respectively. It is also noted that MI ( t )  given 
by (6) is a solution of a non-linear differential equation, well known in soliton dynamics, 
given by 

dZMl(t)/dt2 - b Z M t ( f )  + (2b2/~*)M?(t) = 0. (7) 

The analytical results obtained for the time correlation function using the hyperbolic secant 
memory function is expected to demonstrate the effect of the non-linearity reflected through 
(7) of the atomic motion on the time evolution of the ACF. 

3. Power spectrum of the auto-correlation function 

In order to calculate the time evolution of the ACF C(t) and its power spectrum we rewrite 
(1) as 

where the reduced time scale is f = at and 

5 = (2/n)(82/61). (9) 

In (8) we have used the memory function as given by (6). It may be noted that now 
the ACF involves only one essential parameter 5 .  During the Laplace transform as 
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we obtain 

K Tankeshwar and K N Pathak 

where 

,4 (F) = lmsech(i)exp(-?z)dt 

and has the series expansion [I51 

The Fourier transform G(w) of the ACF C(t) is related to its Laplace transform E(z) as 

Inserting (11) into (13), the power spectrum G(w)  is obtained as 
1 sech(rrw/2) 
H [UT + F(w)]* + sech2(irw/2) 

G(w) = - 

where 
F(w)  = Etanh (z) + 5 1 [$ (7) 1 + iw - 

2 2 

(14) 

In the above equation $ ( x )  is the Euler Psi function. We note that F(w) has the expansions 

for small w and 
H l m  1 
2 

F(o) = - - - 
2 k=o w/4 + [($ + k)2/w14 

for large w. Using (16) and the series expansion of sech(~o/2) ,  we obtain the low-frequency 
behaviour of G(o) as 

However for large w 

It is evident from (IS) and (19) that G(w)  will have a maximum for r < r,,, = 
( H / ~ ) ( I / A  - 1 + 16/n2)' N 2.1. In figure 1, the power spectrum ~ ( w )  of the ACF 
is shown over the entire frequency range for different values of 7. Following Denner and 
Wagner [14], we also find that the maximum in the power spectrum for w > 0 constitutes 
a sufficient condition for oscillatory decay of the ACF. In the next section it is shown that 
oscillatory behaviour of C(r) is observed even for values r > 5,. This implies that the 
oscillatory behaviour of C(r) is not a necessary condition for the existence of the peak in 
G(w) at w # 0. 
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w 

Figure 1. 
sech(t) memory for different values of T. 

Fourier specmm C(o) of lhe AV with Figure 2. Graphical solution of (23) for real L = x. 
This determines lhe poles af f (z )  on the real axis. 

4. Short- and longtime expansion for the auto-correlation function 

The time evolution of C(r) can be obtained by taking the inverse Laplace transform of (1 1) 
i.e. 

The short-time expansion of C(3 is given by 

On the other hand, the long-time expansion of C(3 is determined by evaluating the poles 
of e (z )  which are close to zero. In the next section, it is shown that there are two poles 
ZI  and 22 in this region. The remaining poles give rise to terms that decay much faster. In 
view of the above fact and following the procedure of Denner and Wagner [ 141, we obtain 
the long-time expansion of (20) as 
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5. Investigations of the poles 

5.1. General properties of the poles 

The poles of  e(z) are given by the solution of  the equation 
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In order to obtain the properties of the poles, we have solved (23) graphically for real z 
(= x )  as shown in figure 2. We observe the following: (i) the positive real axis is free of 
poles; (ii) for r rc two poles exist near the origin on the negative real z axis; (iii) for 
T = r, the poles coincide and (iv) for r < r, no pole exists on the real axis. One can 
easily see from (22) that for r c 4,  the poles being in the complex e plane, the ACF shows 
oscillatory behaviour. For r = r, we have z1 = zz = xc and obtain the conditions 

f (xc )  = 0 =+ -S,X, = 2, (T) 
ir 

and 

f ' ( x e )  = 0 * -r, = -8 - x r ( x c : ' >  

From (240) and (24b), we find that 
xc + 1 x,+ 1 

X S B '  ( T )  = 28 (?) 

(244 

This equation can be solved numerically for xc and hence for rc. We find that x, = 
-0.471 39 and r, = 4.4.  It may be noted that r is an independent parameter and is related 
to the frequency sum rules, whereas zl and zz vary with r. In order to have analytical 
dependence of z on r we consider different regions of r. 

5.1.1. r >> 5,. From figure 2 it can be seen that 

lim zI(r) = 0 (26) 
7-+m 

and 

lim Z Z ( T )  = -1. (27) r+m 

Therefore, poles z ~ ( r )  may be obtained by expanding f(z) and z = 0 up to terms of order 
z2. The expression thus obtained is given as 

(28) 
where rl = r + $"(1/2). On the other hand, the pole Z Z ( T )  is obtained by using 
expression (12) in (23): 

z l ( r )  = [-rIjr/p"(1/2)][1 - [ 1  - 2p'(1/2) /~r : ] ' /~~ 

zZ(r) = -; - 4(1 - 16/1~r)"~.  (29) 
For very large values of r ,  the contribution of  pole ZZ(N -1) to the ACF is negligible as 
seen from the expression (22). whereas z , ( r )  = 1/r for r -+ 03 is the leading term in (28). 
The resulting long-time expansion is given as 

C(i)  = exp(-i/r). (30) 
Thus, for very large values of T ,  the ACP C(t)  decays with a time constant r .  This result 
corresponds to M I @ )  = (1/r)6(r) and agrees with that obtained from (1). 
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5.1.2. r 2 r,. For T = r, we have z~(T,) = z2(rc) = x,. Therefore, for slightly larger 
values of t (2 rc), Z I  and z2 can be derived from the series expansion of f ( z )  around 
x = xc.  Using the relations (24a) and (2461, expressions are derived for z1 and zz: 

z1 = x c  - ( 2 i / K ) [ 1  - ( 1  - K X , / Q ) ” ~ ]  

zz = X ,  - ( Z Q / K ) [ l  + (1 + K x J ? ) ’ / ~ ]  

(31)  

(32)  

with i = r - rc and K = (l/7r),9”[(xc + l)/21. 

5.1.3. T 6 rc. For t < r, no pole exists on the real axis. Taking the complex conjugate 
of (23) and noting that p[(z* + 1 ) / 2 ]  = { p [ ( z  + 1 ) / 2 ] ] * ,  we see that the poles are always 
complex conjugate to each other. The condition is necessary for C ( t )  to be real. As a 
result of the complex nature of the poles, oscillations occur in CO). Thus t, separates the 
region of oscillatory behaviour from that of monotonic decay of the ACP. The investigation 
of region t < rc involves a more detailed analysis, which is given in the appendix. There, 
we have obtained the approximate expressions for the poles Z I . ~ ( T )  = x ( t )  f iy(t) with 

x ( t )  = r c x c / r  + (r - r J / r K ’  (33)  

and 

where K’ = p”‘[(xc + 1 ) / 2 ] / 6 @ ” [ ( x ,  + 1)/21. 

equation obtained from (23):  
For a more accurate description of the poles, one needs to solve the following differential 

with z = x +iy. 

5.1.4. t -+ 0. In this region the poles tend to the imaginary axis and the ACF shows more 
oscillations. An analysis of this regime is also given in the appendix. Results are given as 

x ( r )  = - ( l / t )  sech(rr/Zz) (36)  

and 

In the next subsection, we check the validity of the above approximate expressions for the 
poles of e(z). 
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(4 1- 

( I )  

U 
LL 

E 

- xc 
N -0.5 - 

2, 

-1.0 
I G t  6 

T -  

F i y r e  3. (a) Comparison between Ihe numerically determined poles ZI and 4 and the 
approximate analytical expressions on the real z axis: solid curve. numerical solution; e, values 
of 11 and 22 determined from (28) and (29): A,  obwined from (31) and (32); +, obtained from 
(33): 0, obtzned from (36). ( b )  Comparison between the numerically determined imaginary 
parts of the poles (Im zt = -1mzz): solid curve. numerical results; +, from (34); e, from (37). 

5.2. Estimation of validity 

The validity of various analytical formulae derived in the previous subsection is checked by 
solving (23) numerically for 21 and 22. These numerically determined 21 and z2 along with 
their corresponding analytical values are shown in figure 3. From figure 3(a) it can be seen 
that (28) and ( 3 1 )  represent a ( r )  very well. However, the pole zz(r) is not well described 
in the intermediate region 5 c I c 7 by the analytical expressions (29) and (32). For this 
region, one may have to consider higher-order terms in the expansion. For r < r,, we find 
that ~ ( r )  and y(r) are very well predicted by (33), (36) and (34),  (37), respectively. On the 
whole, we find that our analytical expressions for the poles of C ( z )  agree well with those 
obtained by numerical solution of (23) and, therefore, can be used to predict the long-time 
behaviour of the ACF using (22). 

6. Comparison between numerical and analytical results for C(t )  

The equation of motion ( 8 )  for the time evolution of the ACF can be solved numerically by 
taking the inverse Fourier transform of the power spectrum G(o) i.e. 

m 

C(?) = 2 1 G(w) cos(oi) dw. 
n o  

The results obtained from ( 3 8 )  for C(?) are shown as the full line in figure 4 for different 
values of r.  The results obtained from the long-time expansion (22) are also shown in 
figure 4 as solid circles. It can be seen from figure 4 that our analytical results give an 
overall good description of C(?)  if one excludes extremely short times. For the short-time 
region, the expansion (21) is applicable. Thus, both expansions taken together yield a good 
description of the time evolution of the ACF in the whole time domain for a wide range of 
parameter r . 
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Figure 4. Numerically determined time correlation function C(l) in comparison w i h  ule short- 
time expansion (broken CUN% (21)) and the long-lime expansion (solid circles. (22)) for different 
values of r .  

7. Comparison among sech(t), Gaussian and exponential memory functions 

We compare the results for C(t) obtained by using sech(t), a simple exponential and a 
Gaussian form of the memory function. It is found that common features of the ACF 
discussed by Denner and Wagner [14] for exponential and Gaussian memory are also 
exhibited by sech(t) memory. These features are summarized as follows. There exist two 
poles zl and zz that determine the long-time behaviour of the ACF. For all three memory 
functions, a critical value of the parameter r, exists which separates the regime of oscillatory 
behaviour from that of monotonic decay of the ACF. For r -+ CO, one of the poles tends to 
zero and this dominates the long-time behaviour of the ACF. However, there are differences 
among sech(t), exponential and Gaussian memories. These are as follows. The poles 
Rezl.2 vary with r for r < r, for Gaussian and hyperbolic secant memories, whereas these 
have a fixed value of -0.5 for the exponential memory. On the other hand, for increasing 
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r > r, the pole z*(r) approaches - 1  for both exponential and sech(t) memories, whereas it 
tends to -w for Gaussian memory. It is also found that the poles show symmetry around 
z = -0.5 for exponential memory, whereas this kind of symmetry is totally absent in the 
case of Gaussian memory. On the other hand, the poles are more or less symmetric for the 
hyperbolic secant memory. Thus, the hyperbolic secant model memory function has some 
common features with the Gaussian and some with the exponential memory. 

K Tankeshwar and K N Paihak 

1.0 A 

Figure 5. Comparison of time evolution of the ACF 

among Gaussian, hyperbolic secant and exponential 
memory approaches for parameter 82/61 = I: solid 

0 3.0 6.0 9.0 12.0 line, sech(t) memory: dash-dot, Gaussian memory: 
dashed line. exponential memory. 

-0.2 

f2- 

In order to see the difference in the behaviour of the time evolution of the correlation 
function using different memory functions we have plotted C(t)  for exponential, Gaussian 
and sech(t) memories in figure 5 for 82/81 = K. It can be seen from figure 5 that the decay 
of C(?) with exponential and Gaussian memory is slower than that with sech(t) memory. 
It is also found that C ( 8  attains a negative minimum (back scattering effect) for ? N 7.5 
for hyperbolic secant memory, whereas it remains positive for Gaussian and exponential 
memory functions. The above differences in these different cases can be understood by 
noting that r = 82/6~ and 7, = 4, 7 = (2/&382/81 and rc = 3.81 1 and T = (2/n)Sz/& 
and r, = 4.4 for exponential, Gaussian and hyperbolic secant memory, respectively. Here 
7c separates the regime of oscillatory behaviour of C ( t )  from its monotonic decay. From 
this we find that C ( t )  will show oscillatory behaviour for 62/61 < 4, 3.37 and 6.711 for 
exponential, Gaussian and sech(t) memory functions, respectively. Therefore, it is seen 
that the back scattering effects are more pronounced for hyperbolic secant memory than 
for the Gaussian and exponential memories. Thus, our hyperbolic secant memory function 
reflects more non-linearity, which arises due to the effect of the surroundings on the atomic 
motion in a dense medium. Similarly, for the power spectrum G(o) of C(f), we find that a 
non-zero w peak appears for sech(t) memory when 87/81 c 3.27, whereas it appears when 
62/81 < 1.887 for the Gaussian case. The parameter r of the sum rules up to fourth order 
of almost all ACES are known [ I I ,  161. Therefore, our study is expected to be quite useful 
as one can now obtain information about the nature of decay of the ACF simply by knowing 
the value of the parameter and without actually solving Mori's equation numerically. 
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8. Conclusion 

In this paper we have obtained an analytical solution of Mori's integro-differential equation 
for the ACF using a hyperbolic secant form of the memory function. We find that the long- 
time expansion (22) together with the short-time expansion (21) provides a good description 
of C(t)  for the whole time domain. We have found that the behaviour of the ACF depends 
on a single parameter T, which determines whether the A m  decays in an oscillatory or 
non-oscillatory fashion. This parameter r is related to the frequency sum rules of the ACF 
up to fourth order. Similarities as well as differences in the time evolution of C( t )  have 
been discussed for exponential, hyperbolic secant and Gaussian approaches of the memory 
function. It is found that back-scattering effects are more pronounced in our sech(t) memory 
than in Gaussian and exponential memory functions. This implies that our model reflects 
more non-linearity, which arises due to the effect of the motion of a molecule on its 
surroundings in a dense medium and its reflection on the motion of the molecule. 
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Appendix 

In order to obtain the analytical expression for the poles of C ( z )  for the r < r, region, we 
first derive a general relation between real and imaginary parts of the poles. To this end 
we decompose f ( z )  into real and imaginary parts by substituting z = x + iy in (23). This 
provides 

= -(2/r)gl(x,y) (AI) 

y(r) = -(2/r)g2(x2 Y) (A2) 

where 

g l ( x ,  y) = sech(?) exp(-x?) cos(y?) d? (A3) lm 
and 

m 

g z ( x ,  y) = - sech(?)exp(-xi) cos(y?) d?. (A4) 

(i) 5 < 5,. For T -+ T, and hence for x + xc it may be shown that the imaginary part 
y tends to zero. Therefore, the behaviour of the poles for T < T, can be investigated by 
expanding expressions (A3) and (A4) in powers of y up to terms of order y3. Expanding 
(AI) we find that 
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and 
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If we expand (A2) in terms of y we find that 

yz  = 24x [ r  + (?)I /8"' (T) 
Equating (A6) and (A7) in the limit x + xc we obtain 

x = r,x,/r + ( r  - rc)/r K' 
with 

The imaginary part y, however, can be obtained directly from equation (A7) in the limit 
x + xc. We obtain 

(A8) and (A10) determine the real and imaginary parts of the poles for the region r < 5,. 
(ii) r --f 0. Taking x = 0 in (Al) and (A2) it may be shown that for T = 0, the poles 

are located on the imaginary axis at y = &CO. The behaviour of the poles in the r + 0 
limit, therefore, can be investigated from (Al) and (A2) in the limits x + 0 and y + fw. 
In the zeroth-order approximation we obtain 

y ( r )  = -11s ( A l l )  

and 

x ( r )  = -(l/r) sech(xj2r). ( A W  

These equations determine the poles in the r -+ 0 limit. 
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